Computer Aided Design (CAD) Assignment Help






Computer-aided design (CAD), also known as computer-aided design and drafting (CADD), is the use of computer technology for the process of design and design-documentation. Computer Aided Drafting describes the process of drafting with a computer. CADD software, or environments, provides the user with input-tools for the purpose of streamlining design processes; drafting, documentation, and manufacturing processes. CADD output is often in the form of electronic files for print or machining operations. The development of CADD-based software is in direct correlation with the processes it seeks to economize; industry-based software (construction, manufacturing, etc.) typically uses vector-based (linear) environments whereas graphic-based software utilizes raster-based (pixelated) environments. CADD environments often involve more than just shapes. As in the manual drafting of technical and engineering drawings, the output of CAD must convey information, such as materials, processes, dimensions, and tolerances, according to application-specific conventions. CAD may be used to design curves and figures in two-dimensional (2D) space; or curves, surfaces, and solids in three-dimensional (3D) objects

CAD is an important industrial art extensively used in many applications, including automotive, shipbuilding, and aerospace industries, industrial and architectural design, prosthetics, and many more. CAD is also widely used to produce computer animation for special effects in movies, advertising and technical manuals. The modern ubiquity and power of computers means that even perfume bottles and shampoo dispensers are designed using techniques unheard of by engineers of the 1960s. Because of its enormous economic importance, CAD has been a major driving force for research in computational geometry, computer graphics (both hardware and software), and discrete differential geometry.

Computer-aided design is one of the many tools used by engineers and designers and is used in many ways depending on the profession of the user and the type of software in question. CAD is one part of the whole Digital Product Development (DPD) activity within the Product Lifecycle Management (PLM) process, and as such is used together with other tools, which are either integrated modules or stand-alone products, such as:

  • Computer-aided engineering (CAE) and Finite element analysis (FEA).
  • Computer-aided manufacturing (CAM) including instructions to Computer Numerical Control (CNC) machines.
  • Photo realistic rendering.
  • Document management and revision control using Product Data Management (PDM).

Computer-aided engineering (CAE)

Computer-aided engineering (CAE) is the broad usage of computer software to aid in engineering tasks. It includes computer-aided design (CAD), computer-aided analysis (CAA), computer-integrated manufacturing (CIM), computer-aided manufacturing (CAM), material requirements planning (MRP), and computer-aided planning (CAP).

CAE systems are individually considered a single node on a total information network and each node may interact with other nodes on the network. CAE systems can provide support to businesses. This is achieved by the use of reference architectures and their ability to place information views on the business process. Reference architecture is the basis from which information model, especially product and manufacturing models.

Computer-aided manufacturing

Computer-aided manufacturing (CAM) is the use of computer software to control machine tools and related machinery in the manufacturing of workpieces. This is not the only definition for CAM, but it is the most common; CAM may also refer to the use of a computer to assist in all operations of a manufacturing plant, including planning, management, transportation and storage. Its primary purpose is to create a faster production process and components and tooling with more precise dimensions and material consistency, which in some cases, uses only the required amount of raw material (thus minimizing waste), while simultaneously reducing energy consumption.[citation needed] CAM is a subsequent computer-aided process after computer-aided design (CAD) and sometimes computer-aided engineering (CAE), as the model generated in CAD and verified in CAE can be input into CAM software

img

Photo Realistic Rendering

Rendering is the process of generating an image from a model (or models in what collectively could be called a scene file), by means of computer programs. A scene file contains objects in a strictly defined language or data structure; it would contain geometry, viewpoint, texture, lighting, and shading information as a description of the virtual scene. The data contained in the scene file is then passed to a rendering program to be processed and output to a digital image or raster graphics image file. The term "rendering" may be by analogy with an "artist's rendering" of a scene. Though the technical details of rendering methods vary, the general challenges to overcome in producing a 2D image from a 3D representation stored in a scene file are outlined as the graphics pipeline along a rendering device, such as a GPU. A GPU is a purpose-built device able to assist a CPU in performing complex rendering calculations. If a scene is to look relatively realistic and predictable under virtual lighting, the rendering software should solve the rendering equation. The rendering equation doesn't account for all lighting phenomena, but is a general lighting model for computer-generated imagery. 'Rendering' is also used to describe the process of calculating effects in a video editing file to produce final video output. Rendering is one of the major sub-topics of 3D computer graphics, and in practice always connected to the others. In the graphics pipeline, it is the last major step, giving the final appearance to the models and animation. With the increasing sophistication of computer graphics since the 1970s onward, it has become a more distinct subject.

Rendering has uses in architecture, video games, simulators, movie or TV special effects, and design visualization, each employing a different balance of features and techniques. As a product, a wide variety of renderers are available. Some are integrated into larger modeling and animation packages, some are stand-alone, some are free open-source projects. On the inside, a renderer is a carefully engineered program, based on a selective mixture of disciplines related to: light physics, visual perception, mathematics and software development. In the case of 3D graphics, rendering may be done slowly, as in pre-rendering, or in real time. Pre-rendering is a computationally intensive process that is typically used for movie creation, while real-time rendering is often done for 3D video games which rely on the use of graphics cards with 3D hardware accelerators.

img

Product Data Management (PDM)

Product data management (PDM) is the use of software or other tools to track and control data related to a particular product. The data tracked usually involves the technical specifications of the product, specifications for manufacture and development, and the types of materials that will be required to produce goods. The use of product data management allows a company to track the various costs associated with the creation and launch of a product. Product data management is part of product life cycle management, and is primarily used by engineers. Within PDM the focus is on managing and tracking the creation, change and archive of all information related to a product. The information being stored and managed (on one or more file servers) will include engineering data such as Computer-aided design (CAD) models, drawings and their associated documents. Product data management (PDM) serves as a central knowledge repository for process and product history, and promotes integration and data exchange among all business users who interact with products — including project managers, engineers, sales people, buyers, and quality assurance teams.

The central database will also manage metadata such as owner of a file and release status of the components. The package will: control check-in and check-out of the product data to multi-user; carry out engineering change management and release control on all versions/issues of components in a product; build and manipulate the product structure bill of materials (BOM) for assemblies; and assist in configurations management of product variants. This enables automatic reports on product costs, etc. Furthermore, PDM enables companies producing complex products to spread product data into the entire PLM launch-process. This significantly enhances the effectiveness of the launch process.

Product data management is focused on capturing and maintaining information on products and/or services through its development and useful life. Typical information managed in the PDM module include

  • Part number
  • Part description
  • Supplier/vendor
  • Vendor part number and description
  • Unit of measure
  • Cost/price
  • Schematic or CAD drawing
  • Material data sheets

Submit us an Assignment:

For Demo Class Click here
Read more